Free vibration analysis of dragonfly wings using finite element method

Authors

  • M Darvizeh
  • A Darvizeh
  • H Rajabi
  • A Rezaei

DOI:

https://doi.org/10.1260/175095409787924454

Abstract

In the present work, investigations on the microstructure and mechanical properties of the dragonfly wing are carried out and numerical modeling based on Finite Element Method (FEM) is developed to predict Flight characteristics of dragonfly wings. Vibrational behavior of wings type structures is immensely important in analysis, design and manufacturing of similar engineering structures. For this purpose natural frequencies and mode shapes are calculated. In addition, the kind of deformation in each mode shape evaluated and the ratio between numerical natural frequency and experimental natural frequency presented as damping ratio. The results obtain from present method are in good agreement with same experimental methods.

References

R.J. Wootton, Support and deformability in insect wings, Journal of Zoology 193 (1981) 447-468.

R.J. Wootton, Functional morphology of insect wings, Annu. Rev. Entomol. 37 (1992) 113-119. https://doi.org/10.1146/annurev.en.37.010192.000553

C.P. Ellington, The aerodynamics of hovering insect flight. I-VI. Philos. Trans. Roy. Soc. London B, Biolog. Sci. 305 (1984) 1-181.

C.P. Ellington, The aerodynamics of hovering insect flight. III. Kinematics, Philos. , Philos Roy Soc London Ser B 305 (1984) 41-49.

R. Ennos, The inertial cause of wing rotation in Diptera, J. Exp. Biol. 140 (1989) 161-169.

R. Ennos, The importance of torsion in the design of insect wings, J. Exp. Biol. 140 (1988) 137-142.

R. Ennos, Comparative functional morphology of the wings of Diptera, Zoological Journal Of The Linnean Society 96 (1989) 27-47. https://doi.org/10.1111/j.1096-3642.1989.tb01820.x

Antonia B. Kesel, Ute Philippi, Werner Nachtigall. Biomechanical aspects of the insect wing: an analysis using the finite element method, Computers in Biology and Medicine 28 (1998) 423-437. https://doi.org/10.1016/s0010-4825(98)00018-3

T. Wagner, C. Neinhuis, and W. Barthlott. Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zool. 3 (1996) 213-225. https://doi.org/10.1111/j.1463-6395.1996.tb01265.x

S.A. Combes, T.L. Daniel, Flexural stiffness in insect wings I. Scaling and the influence of wing venation, Journal of Experimental Biology 206 (2003) 2979-2987. https://doi.org/10.1242/jeb.00523

R.J. Wootton, Functional morphology of insect wings, Annu. Rev. Entomol. 37 (1992) 113-140. https://doi.org/10.1146/annurev.en.37.010192.000553

L. Zeng, H. Matsumoto, S. Sunada, T. Ohnuki, K. Kawachi, Two-dimensional noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor, J. Optical Engineering 34 (1995) 1226-1231. https://doi.org/10.1117/12.197080

J.S. Chen, J.Y. Chen, Y.F. Chou, On the natural frequencies and mode shapes of dragonfly wings, J. Sound and Vibration 313 (2008) 643-654. https://doi.org/10.1016/j.jsv.2007.11.056

X.S. Wang, Y. Li, Y.F. Shi, Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein, J. Composites Science and Technology 68 (2008) 186-192. https://doi.org/10.1016/j.compscitech.2007.05.023

R.J. Wootton, Geometry and mechanics of insect hindwing fans- a modeling approach, Proc Roy Soc London B 262 (1995) 181-187. https://doi.org/10.1098/rspb.1995.0194

R.J. Wootton, K.E. Evans, R.C. Herbert, C.W. Smith, The hind wing of the desert locust (schistocerca gregaria forskal), I. Functional morphology and mode of operation, J. Exp. Biol. 203 (2000) 2921-2931.

C.W. Smith, R.C. Herbert, R.J. Wootton, K.E. Evans, The hind wing of the desert locust (schistocerca gregaria forskal), II. Mechanical properties and functioning of the membrane, J. Exp. Biol. 203 (2000) 2933-2943.

A.C. Neville, Biology of the arthropod cuticle, Zoophysiology and Ecology, (W. S. Hoar, J. Jacobs, H. Langer, and M. Lindauer, eds.), Springer Verlag, Berlin vol. 4-5 (1975) 1-448.

B.K. Filshie, Fine structure of the cuticle o insects and other arthropods, In: King R.C., Akai H., editors, Insects ultrastructure, New York: Plenum Press 1 (1982) 281-312.https://doi.org/10.1007/978-1-4615-7266-4_10

P. Kreuz, A. Kesel, M. Kempf, M. Göken, H. Vehoff, and W. Nachtigall, Mechanische Eigenschaften biologischer Materialien am Beispiel Insektenflügel. BIONA Rep. 14 (1999) 201-202.

F. Song, K.W. Xiao, K. Bai, Y.L. Bai, Microstructure and nanomechanical properties of the wing membrane of dragonfly, Mat. Sic. Eng. A, 457 (2007) 254-260.https://doi.org/10.1016/j.msea.2007.01.136

S.S. Rao, Mechanical Vibration, Addison-Wesley, New York, (1995).

Published

2009-03-31

How to Cite

Darvizeh, M., Darvizeh, A., Rajabi, H. and Rezaei, A. (2009) “Free vibration analysis of dragonfly wings using finite element method”, The International Journal of Multiphysics, 3(1), pp. 101-110. doi: 10.1260/175095409787924454.

Issue

Section

Articles