Use of massively parallel computing to improve modelling accuracy within the nuclear sector

Authors

  • L Evans
  • J Mena
  • P Mummery
  • R Akers
  • E Surrey
  • A Shterenlikht
  • M Broggi
  • L Margetts

DOI:

https://doi.org/10.21152/1750-9548.10.2.215

Abstract

The extreme environments found within the nuclear sector impose large safety factors on modelling analyses to ensure components operate in their desired manner. Improving analysis accuracy has clear value of increasing the design space that could lead to greater efficiency and reliability.

Novel materials for new reactor designs often exhibit non-linear behaviour; additionally material properties evolve due to in-service damage a combination that is difficult to model accurately. To better describe these complex behaviours a range of modelling techniques previously under-pursued due to computational expense are being developed.

This work presents recent advancements in three techniques: Uncertainty quantification (UQ); Cellular automata finite element (CAFE); Image based finite element methods (IBFEM). Case studies are presented demonstrating their suitability for use in nuclear engineering made possible by advancements in parallel computing hardware that is projected to be available for industry within the next decade costing of the order of $100k.

References

K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater. 2008. 383 (1-2) pp. 189–195. https://doi.org/10.1016/j.jnucmat.2008.08.044

N.M. Newmark, W.J. Hall, Seismic design criteria for nuclear reactor facilities, in: Proc. 4th World Conf. Earthq. Eng. Santiago, Chile, 1969: pp. 37–50.

C. Behrens, M. Holt, Nuclear Power Plants: Vulnerability to Terrorists Attack [ADA444804], Washington, DC, US, 2005. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA444804 (accessed January 11, 2016).

L. Stamford, A. Azapagic, Sustainability indicators for the assessment of nuclear power, Energy. 2011. 36 (10) pp. 6037–6057. https://doi.org/10.1016/j.energy.2011.08.011

S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today. 2009. 12 (11) pp. 12–19. https://doi.org/10.1016/s1369-7021(09)70294-9

G.N. Praveen, J.N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, Int. J. Solids Struct. 1998. 35 (33) pp. 4457–4476. https://doi.org/10.1016/s0020-7683(97)00253-9

L.L. Snead, T.D. Burchell, A.L. Qualls, Strength of neutron-irradiated high-quality 3D carbon fiber composite, J. Nucl. Mater. 2003. 321 (2-3) pp. 165–169. https://doi.org/10.1016/s0022-3115(03)00246-0

I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, B.P. Uberuaga, Radiation damage tolerant nanomaterials, Mater. Today. 2013. 16 (11) pp. 443–449. https://doi.org/10.1016/j.mattod.2013.10.019

J.-W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. - Sci. Des Matériaux. 2006. 31 (6) pp. 633–648. https://doi.org/10.3166/acsm.31.633-648

F. Koch, S. Köppl, H. Bolt, Self passivating W-based alloys as plasma-facing material, J. Nucl. Mater. 2009. 386-388 pp. 572–574. https://doi.org/10.1016/j.jnucmat.2008.12.179

J.F. Bourgat, Numerical experiments of the homogenization method, in: R. Glowinski, J.L. Lions, I. Laboria (Eds.), Comput. Methods Appl. Sci. Eng. 1977, I, Springer Berlin Heidelberg, 1979: pp. 330–356.

B.V. George, J.A. Board, The Sizewell B design, Nucl. Energy. 1987. 26 (3) pp. 133–148.

L. Popa-Simil, Using High Performance Scientific Computing to Accelerate the Discovery and Design of Nuclear Power Applications, in: R. Segall, J. Cook, Q. Zhang (Eds.), Res. Appl. Glob. Supercomput., IGI Global, 2015: pp. 119–148. https://doi.org/10.4018/978-1-4666-7461-5.ch005

E. Strohmaier, H.W. Meuer, J. Dongarra, H.D. Simon, The TOP500 List and Progress in High-Performance Computing, Computer (Long. Beach. Calif). 2015. 48 (11) pp. 42–49. https://doi.org/10.1109/mc.2015.338

X. Liao, L. Xiao, C. Yang, Y. Lu, MilkyWay-2 supercomputer: system and application, Front. Comput. Sci. 2014. 8 (3) pp. 345–356. https://doi.org/10.1007/s11704-014-3501-3

P. Gepner, M.F. Kowalik, Multi-Core Processors: New Way to Achieve High System Performance, in: Int. Symp. Parallel Comput. Electr. Eng., IEEE, 2006: pp. 9–13. https://doi.org/10.1109/parelec.2006.54

P. Bientinesi, J.R. Herrero, E.S. Quintana-Ortí, R. Strzodka, Parallel computing on graphics processing units and heterogeneous platforms, Concurr. Comput. Pract. Exp. 2015. 27 (6) pp. 1525–1527. https://doi.org/10.1002/cpe.3411

Sage Storage [Online]. Available: http://www.sagestorage.eu/ (accessed January 11, 2016).

S. Hemmert, Green HPC: From Nice to Necessity, Comput. Sci. Eng. 2010. 12 (6) pp. 8–10. https://doi.org/10.1109/mcse.2010.134

R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, alan gara, G. Chiu, P. Boyle, N. Chist, C. Kim, The IBM Blue Gene/Q Compute Chip, IEEE Micro. 2012. 32 (2) pp. 48–60. https://doi.org/10.1109/mm.2011.108

E. Rincón, J. Alonso, G. Barrera, J. Botija, P. Fernández, M. Medrano, G. Pérez, F. Ramos, A. Soleto, P. Barabaschi, E. Di Pietro, L. Meunier, A. Sakasai, K. Masaki, Y. Shibama, Structural analysis of the JT-60SA cryostat base, Fusion Eng. Des. 2011. 86 (6-8) pp. 623–626. https://doi.org/10.1016/j.fusengdes.2011.01.008

P. Bowen, J.F. Knott, Size effects on the microscopic cleavage fracture stress, σ F * , in martensitic microstructures, Metall. Trans. A. 1986. 17 (2) pp. 231–241. https://doi.org/10.1007/bf02643899

T. Barrett, D. Hancock, M. Kalsey, W. Timmis, M. Porton, Design Study of a Water-Cooled Divertor: Alternative Concepts, Report for TA WP12-DAS-02-T02 [EFDA D 2MA647], 2012.

P. Gavila, B. Riccardi, G. Pintsuk, G. Ritz, V. Kuznetsov, A. Durocher, High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor, Fusion Eng. Des. 2015. 98-99 pp. 1305–1309. https://doi.org/10.1016/j.fusengdes.2014.12.006

M.H. Ramsey, S.L.R. Ellison, H. Czichos, W. Hässelbarth, H. Ischi, W. Wegscheider, B. Brookman, A. Zschunke, H. Frenz, M. Golze, M. Hedrich, A. Schmidt, T. Steiger, Quality in Measurement and Testing, in: H. Czichos, T. Saito, L. Smith (Eds.), Springer Handb. Metrol. Test., Springer-Verlag, Berlin Heidelberg, 2011: pp. 39–141. https://doi.org/10.1007/978-3-642-16641-9_3

R.F. Stapelberg, Reliability and Performance in Engineering Design, in: Handb. Reliab. Availability, Maintainab. Saf. Eng. Des., Springer London, London, 2009: pp. 43–294.

E. Patelli, H. Murat Panayirci, M. Broggi, B. Goller, P. Beaurepaire, H.J. Pradlwarter, G.I. Schuëller, General purpose software for efficient uncertainty management of large finite element models, Finite Elem. Anal. Des. 2012. 51 pp. 31–48. https://doi.org/10.1016/j.finel.2011.11.003

J.D. Arregui-Mena, L. Margetts, P.M. Mummery, Practical Application of the Stochastic Finite Element Method, Arch. Comput. Methods Eng. 2014. 23 (1) pp. 171–190. https://doi.org/10.1007/s11831-014-9139-3

COSSAN-X [Online]. Available: http://www.cossan.co.uk/ (accessed January 11, 2016).

E. Patelli, M. Broggi, M. de Angelis, M. Beer, OpenCossan: An Efficient Open Tool for Dealing with Epistemic and Aleatory Uncertainties, in: Second Int. Conf. Vulnerability Risk Anal. Manag., Liverpool, UK, 2014. https://doi.org/10.1061/9780784413609.258

G.M. Laudone, C.M. Gribble, G.P. Matthews, Characterisation of the porous structure of Gilsocarbon graphite using pycnometry, cyclic porosimetry and void-network modeling, Carbon N. Y. 2014. 73 pp. 61–70. https://doi.org/10.1016/j.carbon.2014.02.037

C.N. Morrison, A.P. Jivkov, Y. Vertyagina, T.J. Marrow, Multi-scale modelling of nuclear graphite tensile strength using the site-bond lattice model, Carbon N. Y. 2016. 100 pp. 273–282. https://doi.org/10.1016/j.carbon.2015.12.100

New cracks in Hunterston reactor - BBC News [Online]. Available: http://www.bbc.co.uk/news/science-environment-29481481 (accessed January 11, 2016).

J.D. Arregui-Mena, L. Margetts, D.V. Griffiths, L. Lever, G. Hall, P.M. Mummery, Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks, J. Nucl. Mater. 2015. 465 pp. 793–804. https://doi.org/10.1016/j.jnucmat.2015.05.058

G.A. Fenton, D. V. Griffiths, Risk Assessment in Geotechnical Engineering, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008.

I.M. Smith, D. V. Griffiths, L. Margetts, Programming the Finite Element Method, 5th ed., Wiley, Chichester, 2013.

I.M. Smith, L. Margetts, The convergence variability of parallel iterative solvers, Eng. Comput. 2006. 23 (2) pp. 154–165. https://doi.org/10.1108/02644400610644522

L. Margetts, Parallel Finite Element Analysis, University of Manchester, 2002.

ParaFEM [Online]. Available: http://parafem.org.uk/ (accessed January 11, 2016).

D. Raabe, Cellular automata in materials science with particular reference to recrystallization simulation, Annu. Rev. Mater. Res. 2002. 32 (1) pp. 53–76. https://doi.org/10.1146/annurev.matsci.32.090601.152855

A. Shterenlikht, L. Margetts, Three-dimensional cellular automata modelling of cleavage propagation across crystal boundaries in polycrystalline microstructures, Proc. R. Soc. A Math. Phys. Eng. Sci. 2015. 471 (2177) pp. 20150039–20150039. https://doi.org/10.1098/rspa.2015.0039

M. Xiaying, H. Hurang, A finite element elastic-plastic-creep analysis of materials with temperature dependent properties, Comput. Struct. 1988. 30 (4) pp. 953–956. https://doi.org/10.1016/0045-7949(88)90133-2

L. Saucedo Mora, M. Mostafavi, T.J. Marrow, D. Khoshkhou, B. Connolly, C. Reinhard, R. Atwood, S. Zhao, 3D cellular automata finite element (CAFE) modelling and experimental observation of damage in quasi-brittle nuclear materials: Indentation of a SiC-SiC-fibre ceramic matrix composite, in: Struct. Mater. Innov. Nucl. Syst., Idaho National Laboratory, Idaho Falls, United States, 2015: pp. 243–250. https://doi.org/10.1016/j.finel.2015.11.003

J.K. Mackenzie, Second paper on statistics associated with the random disorientation of cubes, Biometrika. 1958. 45 (1-2) pp. 229–240. https://doi.org/10.1093/biomet/45.1-2.229

J. Phillips, A. Shterenlikht, M.J. Pavier, Cellular automata modelling of nano-crystalline instability, in: Proc. 20th UK ACME Conf., Manchester, UK, 2012.

CGPACK on SourceForge.net [Online]. Available: http://sourceforge.net/projects/cgpack/ (accessed January 11, 2016).

E. Coleri, J.T. Harvey, K. Yang, J.M. Boone, Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures, Constr. Build. Mater. 2012. 30 pp. 783–793. https://doi.org/10.1016/j.conbuildmat.2011.12.071

S.A. McDonald, G. Dedreuil-Monet, Y.T. Yao, A. Alderson, P.J. Withers, In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension, Phys. Status Solidi. 2011. 248 (1) pp. 45–51. https://doi.org/10.1002/pssb.201190001

Ll.M. Evans, L. Margetts, V. Casalegno, F. Leonard, T. Lowe, P.D. Lee, M. Schmidt, P.M. Mummery, Thermal characterisation of ceramic/metal joining techniques for fusion applications using X-ray tomography, Fusion Eng. Des. 2014. 89 pp. 826–836. https://doi.org/10.1016/j.fusengdes.2014.05.002

D. Gonzalez, A. King, M. Mostafavi, P. Reischig, S. Rolland du Roscoat, W. Ludwig, J. Quinta da Fonseca, P.J. Withers, T.J. Marrow, Three-dimensional observation and image-based modelling of thermal strains in polycrystalline alumina, Acta Mater. 2013. 61 (20) pp. 7521–7533. https://doi.org/10.1016/j.actamat.2013.06.005

P.G. Young, T.B.H. Beresford-West, S.R.L. Coward, B. Notarberardino, B. Walker, A. Abdul-Aziz, An efficient approach to converting three-dimensional image data into highly accurate computational models., Philos. Trans. A. Math. Phys. Eng. Sci. 2008. 366 (1878) pp. 3155–73. https://doi.org/10.1098/rsta.2008.0090

A.M. Yamileva, A.V. Yuldashev, I.S. Nasibullayev, Comparison of the Parallelization Efficiency of a Thermo-Structural Problem Simulated in SIMULIA Abaqus and ANSYS Mechanical, J. Eng. Sci. Technol. Rev. 2012. 5 (3) pp. 39–43. https://doi.org/10.25103/jestr.053.8

R. Tivey, T. Ando, A. Antipenkov, V. Barabash, S. Chiocchio, G. Federici, C. Ibbott, R. Jakeman, G. Janeschitz, R. Raffray, M. Akiba, I. Mazul, H. Pacher, M. Ulrickson, G. Vieider, ITER divertor, design issues and research and development, Fusion Eng. Des. 1999. 46 (2-4) pp. 207–220. https://doi.org/10.1016/s0920-3796(99)00047-2

R.D. Watson, F.M. Hosking, M.F. Smith, C.D. Croessmann, Development and Testing of the ITER Divertor Monoblock Braze Design, Fusion Sci. Technol. 1991. 19 (3P2B) pp. 1794–1798. https://doi.org/10.13182/fst91-a29603

Ll.M. Evans, L. Margetts, V. Casalegno, L. Lever, J. Bushell, T. Lowe, A. Wallwork, P. Young, A. Lindemann, M. Schmidt, P. Mummery, Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data, Fusion Eng. Des. 2015. 100 pp. 100–111. https://doi.org/10.1016/j.fusengdes.2015.04.048

MXIF [Online]. Available: http://www.mxif.manchester.ac.uk/ (accessed January 11, 2016).

D image data visualisation, analysis and model generation with Simpleware software [Online]. Available: http://www.simpleware.com/ (accessed January 11, 2016).

Ll.M. Evans, L. Margetts, J. Bushell, T. Lowe, A. Wallwork, W.E. Windes, P. Young, P.M. Mummery, Parallel processing for time-dependent heat flow problems, in: NAFEMS World Congr., Salzburg, Austria, 2013.

ParaView - Open Source Scientific Visualization [Online]. Available: http://www.paraview.org/ (accessed January 11, 2016).

J. West, S. Gallagher, Challenges of open innovation: the paradox of firm investment in open-source software, R D Manag. 2006. 36 (3) pp. 319–331. https://doi.org/10.1111/j.1467-9310.2006.00436.x

Ll.M. Evans, Thermal Modelling of Composite Materials for Fusion Applications; Finite Element Analysis from X-ray Tomographic Images, University of Manchester, 2013.

R. Kurihara, S. Ueda, S. Nishio, Y. Seki, Fracture mechanics evaluation of a crack generated in SiC/SiC composite first wall, Fusion Eng. Des. 2001. 54 (3-4) pp. 465–471. https://doi.org/10.1016/s0920-3796(00)00567-6

Published

2016-06-30

How to Cite

Evans, L., Mena, J., Mummery, P., Akers, R., Surrey, E., Shterenlikht, A., Broggi, M. and Margetts, L. (2016) “Use of massively parallel computing to improve modelling accuracy within the nuclear sector”, The International Journal of Multiphysics, 10(2), pp. 215-236. doi: 10.21152/1750-9548.10.2.215.

Issue

Section

Articles

Most read articles by the same author(s)